Premium
Optimization of the ultrasound‐assisted extraction of antioxidant phloridzin from Lithocarpus polystachyus Rehd. using response surface methodology
Author(s) -
Chen Yang,
Yin LiZi,
Zhao Ling,
Shu Gang,
Yuan ZhiXiang,
Fu HuaLin,
Lv Cheng,
Lin JuChun
Publication year - 2017
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201700686
Subject(s) - response surface methodology , sonication , extraction (chemistry) , chemistry , chromatography , high performance liquid chromatography , antioxidant , yield (engineering) , ethanol , biochemistry , materials science , metallurgy
The purpose of this study was to optimize the extraction process of phloridzin from Lithocarpus polystachyus Rehd. leaves using response surface methodology and to determine the antioxidant capacity of the extract. A Box–Behnken design was used to analyze the effects of ethanol concentration, liquid–solid ratio, soak time and extraction time on the extraction yield of phloridzin. The content of phloridzin was determined by high‐performance liquid chromatography. To assess the antioxidant capacity of the extract, three in vitro test systems were used (1,1‐,diphenyl‐2‐picrylhydrazyl, hydroxyl radical scavenging test and reduction force). The optimal parameters obtained by response surface methodology were a volume fraction of ethanol of 64%, a liquid–solid ratio of 37:1, a soaking time of 35 h and a sonication time of 38 min. The proportion of the extraction of phloridzin from L. polystachyus under these industrial process conditions was 3.83%. According to the obtained results, response surface methodology could be suggested as an adequate model for optimizing the extraction process of phloridzin from L. polystachyus . Ultrasound extraction significantly increased the extraction rate of phloridzin, which could be used as an antioxidant in pharmaceutical and food products.