z-logo
Premium
Direct online extraction and determination by supercritical fluid extraction with chromatography and mass spectrometry of targeted carotenoids from red Habanero peppers ( Capsicum chinense Jacq.)
Author(s) -
Zoccali Mariosimone,
Giuffrida Daniele,
Dugo Paola,
Mondello Luigi
Publication year - 2017
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201700669
Subject(s) - chromatography , supercritical fluid extraction , extraction (chemistry) , mass spectrometry , chemistry , supercritical fluid , supercritical fluid chromatography , sample preparation , carotenoid , analyte , high performance liquid chromatography , food science , organic chemistry
Recently, supercritical fluid chromatography coupled to mass spectrometry has gained attention as a fast and useful technology applied to the carotenoids analysis. However, no reports are available in the literature on the direct online extraction and determination by supercritical fluid extraction with chromatography and mass spectrometry. The aim of this research was the development of an online method coupling supercritical fluid extraction and supercritical fluid chromatography for a detailed targeted native carotenoids characterization in red habanero peppers. The online nature of the system, compared to offline approaches, improves run‐to‐run precision, enables the setting of batch‐type applications, and reduces the risks of sample contamination. The extraction has been optimized using different temperatures, starting from 40°C up to 80°C. Multiple extractions, until depletion, were performed on the same sample to evaluate the extraction yield. The range of the first extraction yield, carried out at 80°C, which was the best extraction temperature, was 37.4–65.4%, with a %CV range of 2–12. Twenty‐one targeted analytes were extracted and identified by the developed methodology in less than 17 min, including free, monoesters, and diesters carotenoids, in a very fast and efficient way. Quantification of the β‐carotene was carried out by using the optimized conditions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom