z-logo
Premium
Novel application of fluorescence coupled capillary electrophoresis to resolve the interaction between the G‐quadruplex aptamer and thrombin
Author(s) -
Wang Jianhao,
Gu Yaqin,
Liu Li,
Wang Cheli,
Wang Jianpeng,
Ding Shumin,
Li Jinping,
Qiu Lin,
Jiang Pengju
Publication year - 2017
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201700456
Subject(s) - aptamer , thrombin , g quadruplex , capillary electrophoresis , chemistry , nucleic acid , oligonucleotide , biophysics , dna , biochemistry , combinatorial chemistry , chromatography , microbiology and biotechnology , platelet , biology , immunology
The dynamic binding status between the thrombin and its G‐quadruplex aptamers and the stability of its interaction partners were probed using our previously established fluorescence‐coupled capillary electrophoresis method. A 29‐nucleic acid thrombin binding aptamer was chosen as a model to study its binding affinity with the thrombin ligand. First, the effects of the cations on the formation of G‐quadruplex from unstructured 29‐nucleic acid thrombin binding aptamer were examined. Second, the rapid binding kinetics between the thrombin and 6‐carboxyfluorescein labeled G‐quadruplex aptamer was measured. Third, the stability of G‐quadruplex aptamer–thrombin complex was also examined in the presence of the interfering species. Remarkably, it was found that the complementary strand of 29‐nucleic acid thrombin binding aptamer could compete with G‐quadruplex aptamer and thus disassociated the G‐quadruplex structure into an unstructured aptamer. These data suggest that our in‐house established fluorescence‐coupled capillary electrophoresis assay could be applied to binding studies of the G‐quadruplex aptamers, thrombin, and their ligands, while overcoming the complicated and costly approaches currently available.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom