z-logo
Premium
Rapid determination of oligomeric hindered amine light stabilizers in polymeric materials
Author(s) -
Kreisberger Georg,
Buchberger Wolfgang W.
Publication year - 2017
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201700210
Subject(s) - polyolefin , amine gas treating , polymer , chemistry , chromatography , mass spectrometry , stabilizer (aeronautics) , aromatic amine , analytical technique , organic chemistry , mechanical engineering , layer (electronics) , engineering
Hindered amine light stabilizers are essential for the stabilization of synthetic polymers, particularly for materials used for outdoor applications. Although up to now a considerable number of studies dealing with the analytics of this class of stabilizers had been published, especially the determination of oligomeric hindered amine light stabilizers is still an analytical challenge. In the current work, a fast and simple liquid chromatographic method for the quantitative determination of oligomeric hindered amine light stabilizers is presented. A key aspect of this method is their completely different retention behavior depending on the pH, enabling a single peak elution approach by a pH gradient run. This allows a quantitation with simple UV detection independent of the actual oligomeric composition. Calibration curves within the concentration range relevant for the analysis of real polymer samples (LOQ = 70 mg/L) were constructed with R 2 values above 0.99. Spiked extracts from polyolefin samples showed recovery rates between 97.3 and 102.9% for five different commercial hindered amine light stabilizers. Relative standard deviations were between 2.0 and 3.9%. Furthermore, it was demonstrated that the employed approach can be easily adapted for mass spectrometry detection.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here