Premium
Separation of phenolic acids from sugarcane rind by online solid‐phase extraction with high‐speed counter‐current chromatography
Author(s) -
Geng Ping,
Fang Yingtong,
Xie Ronglong,
Hu Weilun,
Xi Xingjun,
Chu Qiao,
Dong Genlai,
Shaheen Nusrat,
Wei Yun
Publication year - 2017
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201600887
Subject(s) - chromatography , countercurrent chromatography , chemistry , extraction (chemistry) , ferulic acid , solid phase extraction , elution , gallic acid , separation process , phenolic acid , solvent , high performance liquid chromatography , organic chemistry , antioxidant
Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid‐phase extraction with high‐speed counter‐current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid‐phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid‐phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two‐phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid‐phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p ‐coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution–extrusion counter‐current chromatography and back‐extrusion counter‐current chromatography were compared.