z-logo
Premium
Simple field‐based automated dispersive liquid–liquid microextraction of trace level phthalate esters in natural waters with gas chromatography and mass spectrometric analysis
Author(s) -
Leng Geng,
Chen Wenjin,
Wang Yong
Publication year - 2016
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201600383
Subject(s) - chromatography , chemistry , phthalate , gas chromatography , mass spectrometry , analytical chemistry (journal) , organic chemistry
A small, simple, and field‐based automated dispersive liquid–liquid microextraction method followed by gas chromatography mass spectrometric analysis was developed for trace level phthalate esters analysis in natural waters. With a single syringe pump that is coupled with a multiposition valve, the whole extraction procedure including cleaning, sampling, mixing of extractant and disperser solvents, extraction, phase separation, and analytes collection was carried out in a totally automated way with a sample throughput of 21 h −1 . Key factors, such as type and ratio of the extractant and disperser solvent, aspiration flow rate, extraction time, and matrix effect, were thoroughly investigated. Under the optimum conditions, linearity was found in the range from 0.03 to 60 μg/L. Limits of detection ranged from 0.0015 to 0.003 μg/L. Enrichment factors were in a range of 106–141. Reproducibility and recoveries were assessed by testing a series of three natural water samples that were spiked with different concentration levels. Finally, the proposed method was successfully applied in analysis of real surface waters. The developed system is inexpensive, light (2.6 kg), simple to use, applicable in the field, with high sample throughput, and sensitive enough for trace level phthalate esters analysis in natural waters.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here