Premium
Quantitative analysis of ripasudil hydrochloride hydrate and its impurities by reversed‐phase high‐performance liquid chromatography after precolumn derivatization: Identification of four impurities
Author(s) -
Hui Wenkai,
Sun Lili,
Zhang Hui,
Zou Liang,
Zou Qiaogen,
Ouyang Pingkai
Publication year - 2016
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201600278
Subject(s) - triethylamine , chemistry , chromatography , reagent , derivatization , high performance liquid chromatography , hydrochloride , impurity , organic chemistry
We report the development and validation of a stability‐indicating reversed‐phase high‐performance liquid chromatography method with precolumn derivatization for the separation and identification of the impurities of ripasudil hydrochloride hydrate, a novel protein kinase inhibitor. 2,3,4,6‐Tetra‐ O ‐acetyl‐β‐ d ‐glucopyranosyl isothiocyanate was chosen as the derivatizing reagent and triethylamine was added as catalyst. 200 μL sample solution (1 mg/mL), 600 μL derivatizing reagent (1 mg/mL), and 200 μL triethylamine solution (1%, v/v) were mixed and reacted at 40°C for 30 min. The separation was achieved on an Inertsil C 18 ODS‐3 (250 mm × 4.6 mm, 5 μm) column using mobile phases including 10 mmol monopotassium phosphate buffer (pH 3.0) and methanol in gradient mode. The column temperature was adjusted at 25°C and the flow rate at 1 mL/min. The detection was carried out at 220 nm. Different precolumn derivatization conditions as well as the high‐performance liquid chromatography conditions were optimized. Ripasudil hydrochloride hydrate and its four impurities were detected and quantitated, among which two new compounds were characterized. The proposed method was validated and proven to be selective, accurate, and precise and suitable for the quantitative analysis of ripasudil hydrochloride hydrate.