Premium
Synthesis of molecularly imprinted polymer nanoparticles for the fast and highly selective adsorption of sunset yellow
Author(s) -
Zhang Yu,
Xie Zhihai,
Teng Xiaoxiao,
Fan Jin
Publication year - 2016
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201501295
Subject(s) - molecularly imprinted polymer , precipitation polymerization , adsorption , chemistry , langmuir adsorption model , nanoparticle , polymer , tartrazine , nuclear chemistry , polymerization , chemical engineering , chromatography , radical polymerization , materials science , organic chemistry , selectivity , nanotechnology , engineering , catalysis
Novel molecularly imprinted polymer nanoparticles were synthesized by precipitation polymerization with sunset yellow as the template and [2‐(methacryloyloxy)ethyl] trimethylammonium chloride as the functional monomer. The molecularly imprinted polymer nanoparticles were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and their specific surface area and thermal stability were measured. The molecularly imprinted polymer nanoparticles had a high adsorption capacity in wide pH range (pH 1–8) for sunset yellow. The adsorption equilibrium only needed 5 min, and the quantitative desorption was very fast (1 min) by using 10.0 mol/L HCl as the eluant. The maximum adsorption capacity of the molecularly imprinted polymer nanoparticles for sunset yellow was 144.6 mg/g. The adsorption isotherm and kinetic were well consistent with Langmuir adsorption model and pseudo‐second‐order kinetic model, respectively. The relative selectivity coefficients of the molecularly imprinted polymer nanoparticles for tartrazine and carmine were 9.766 and 12.64, respectively. The prepared molecularly imprinted polymer nanoparticles were repeatedly used and regenerated ten times without significant absorption capacity decrease.