Premium
Preparation of cyclodextrin‐modified monolithic hybrid columns for the fast enantioseparation of hydroxy acids in capillary liquid chromatography
Author(s) -
Szwed Kamila,
Ou Junjie,
Huang Guang,
Lin Hui,
Liu Zhongshan,
Wang Hongwei,
Zou Hanfa
Publication year - 2016
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201501157
Subject(s) - monolith , cyclodextrin , chemistry , chromatography , monolithic hplc column , silsesquioxane , high performance liquid chromatography , capillary electrophoresis , hydrochloride , enantiomer , organic chemistry , catalysis , polymer
Cyclodextrins and their derivatives are one of the most common and successful chiral selectors. However, there have been few publications about the use of cyclodextrin‐modified monoliths. In this study, organic hybrid monoliths were prepared by the immobilization of derivatized β‐cyclodextrin alone or with l‐ 2‐allylglycine hydrochloride to the polyhedral oligomeric silsesquioxane methacryl substituted monolith. The main topic of this study is a combined system with dual chiral selectors ( l‐ 2‐allylglycine hydrochloride and β‐cyclodextrin) as monolithic chiral stationary phase. The effect of l‐ 2‐allylglycine hydrochloride concentration on enantioseparation was investigated. The enantioseparation of the four acidic compounds with resolutions up to 2.87 was achieved within 2.5 min on the prepared chiral monolithic column in capillary liquid chromatography. Moreover, the possible mechanism of enantioseparation was discussed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom