z-logo
Premium
Extraction of phenolic compounds from water samples by dispersive micro‐solid‐phase extraction
Author(s) -
Babaee Shirin,
Daneshfar Ali
Publication year - 2016
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201500977
Subject(s) - solid phase extraction , extraction (chemistry) , sorbent , chromatography , fractional factorial design , detection limit , sample preparation , analytical chemistry (journal) , fourier transform infrared spectroscopy , chemistry , materials science , factorial experiment , chemical engineering , adsorption , statistics , mathematics , organic chemistry , engineering
In this article, the use of magnetically separable sorbent polyaniline/silica‐coated nickel nanoparticles is evaluated under a dispersive micro‐solid‐phase extraction approach for the extraction of phenolic compounds from water samples. The sorbent was prepared by in situ chemical polymerization of aniline on the surface of silica‐modified nickel nanoparticles and was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, X‐ray powder diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectrometry, and vibrating sample magnetometry. Effective variables such as amount of sorbent (milligrams), pH and ionic strength of sample solution, volume of eluent solvent (microliters), vortex, and ultrasonic times (minutes) were investigated by fractional factorial design. The significant variables optimized by a Box–Behnken design were combined by a desirability function. Under the optimized conditions, the calibration graphs of analytes were linear in a concentration range of 0.02–100 μg/mL, and with correlation coefficients more than 0.999. The limits of detection and quantification were in the ranges of 10–23 and 33–77 μg/L, respectively. This procedure was successfully employed in the determination of target analytes in spiked water samples; the relative mean recoveries ranged from 96 to 105%.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here