Premium
Synthesis and evaluation of dummy molecularly imprinted microspheres for the specific solid‐phase extraction of six anthraquinones from slimming tea
Author(s) -
Wu Xingqiang,
Liang Shuxuan,
Ge Xusheng,
Lv Yunkai,
Sun Hanwen
Publication year - 2015
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201401341
Subject(s) - chromatography , solid phase extraction , extraction (chemistry) , anthraquinones , analyte , detection limit , chemistry , sample preparation , microsphere , solvent , sorbent , high performance liquid chromatography , adsorption , organic chemistry , chemical engineering , botany , engineering , biology
Dummy molecularly imprinted microspheres with danthron as template were synthesized and their performance was evaluated. Accelerated solvent extraction can rapidly and effectively remove template molecules from the microspheres. The microspheres were applied as a specific sorbent for solid‐phase extraction of six anthraquinones from slimming tea, showing excellent affinity and high selectivity to danthron and the target analytes. The molecular recognition mechanisms were discussed by the experimental validation with IR spectroscopy. The sample was treated using accelerated solvent extraction followed by dummy molecularly imprinted microspheres solid‐phase extraction. Under the optimized ultra high performance liquid chromatographic conditions, the six target analytes can be baseline separated in 8 min, and good linearity was obtained in a range of 0.1–40 μg/mL with the correlation coefficient ( r 2 ) of ≥0.9998. The method limit of quantification was in a range of 1–2 mg/kg, it can ensure analysis of anthraquinones at mg/kg level. The intra‐ and interday precision (RSD, n = 6) for the analysis of the six analytes in a slimming tea was less than 4.5 and 5.4%, respectively. The developed method can be applied for the selective extraction, effective separation, and rapid determination of six anthraquinones in slimming tea.