Premium
Reversed‐phase vortex‐assisted liquid–liquid microextraction: A new sample preparation method for the determination of amygdalin in oil and kernel samples
Author(s) -
Hosseini Mohammad,
Heydari Rouhollah,
Alimoradi Mohammad
Publication year - 2015
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201401172
Subject(s) - chromatography , detection limit , extraction (chemistry) , chemistry , solvent , calibration curve , amygdalin , sample preparation , analytical chemistry (journal) , high performance liquid chromatography , medicine , alternative medicine , organic chemistry , pathology
A novel, simple, and rapid reversed‐phase vortex‐assisted liquid–liquid microextraction coupled with high‐performance liquid chromatography has been introduced for the extraction, clean‐up, and preconcentration of amygdalin in oil and kernel samples. In this technique, deionized water was used as the extracting solvent. Unlike the reversed‐phase dispersive liquid–liquid microextraction, dispersive solvent was eliminated in the proposed method. Various parameters that affected the extraction efficiency, such as extracting solvent volume and its pH, vortex, and centrifuging times were evaluated and optimized. The calibration curve shows good linearity ( r 2 = 0.9955) and precision (RSD < 5.2%) in the range of 0.07–20 μg/mL. The limit of detection and limit of quantitation were 0.02 and 0.07 μg/mL, respectively. The recoveries were in the range of 96.0–102.0% with relative standard deviation values ranging from 4.0 to 5.1%. Unlike the conventional extraction methods for plant extracts, no evaporative and re‐solubilizing operations were needed in the proposed technique.