z-logo
Premium
Simultaneous extraction and determination of various pesticides in environmental waters
Author(s) -
Zhang Zulin,
Lefebvre Thibault,
Kerr Christine,
Osprey Mark
Publication year - 2014
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201400855
Subject(s) - solid phase extraction , chromatography , pesticide , detection limit , dichloromethane , extraction (chemistry) , chemistry , ethyl acetate , european union , cartridge , gas chromatography , solvent , environmental chemistry , materials science , agronomy , organic chemistry , metallurgy , business , biology , economic policy
A simple and rapid method was developed for the simultaneous analysis of nine different pesticides in water samples by gas chromatography with mass spectrometry. A number of parameters that may affect the recovery of pesticides, such as the type of solid‐phase extraction cartridge, eluting solvent in single or combination and their volumes, and water pH value were investigated. It showed that three solid‐phase extraction cartridges (Strata‐X, Oasis HLB, and ENVI‐18) produced the greatest recovery while ethyl acetate/dichloromethane/acetone (45:10:45, 12 mL) followed by dichloromethane (6 mL) was efficient in eluting target pesticides from solid‐phase extraction cartridges. Different water pH values (4–9) did not show a significant effect on the pesticides recovery. The optimized method was verified by performing spiking experiments with a series of concentrations (0.002–10 μg/L) in waters, with good linearity, recovery, and reproducibility for most compounds. The limit of detection and limit of quantification of this optimized method were 0.01–2.01 and 0.02–6.71 ng/L, respectively, much lower than the European Union environmental quality standard for the pesticides (0.1 μg/L) in waters. The proposed method was further validated by participation in an interlaboratory trial. It was then subsequently applied to river waters from north‐east Scotland, UK, for the determination of the target pesticides.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here