z-logo
Premium
Optimization and determination of polycyclic aromatic hydrocarbons in biochar‐based fertilizers
Author(s) -
Chen Ping,
Zhou Hui,
Gan Jay,
Sun Mingxing,
Shang Guofeng,
Liu Liang,
Shen Guoqing
Publication year - 2015
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201400834
Subject(s) - biochar , phenanthrene , detection limit , extraction (chemistry) , chemistry , perylene , environmental chemistry , pyrene , adsorption , polycyclic aromatic hydrocarbon , solvent , chromatography , pyrolysis , organic chemistry , molecule
The agronomic benefit of biochar has attracted widespread attention to biochar‐based fertilizers. However, the inevitable presence of polycyclic aromatic hydrocarbons in biochar is a matter of concern because of the health and ecological risks of these compounds. The strong adsorption of polycyclic aromatic hydrocarbons to biochar complicates their analysis and extraction from biochar‐based fertilizers. In this study, we optimized and validated a method for determining the 16 priority polycyclic aromatic hydrocarbons in biochar‐based fertilizers. Results showed that accelerated solvent extraction exhibited high extraction efficiency. Based on a Box–Behnken design with a triplicate central point, accelerated solvent extraction was used under the following optimal operational conditions: extraction temperature of 78°C, extraction time of 17 min, and two static cycles. The optimized method was validated by assessing the linearity of analysis, limit of detection, limit of quantification, recovery, and application to real samples. The results showed that the 16 polycyclic aromatic hydrocarbons exhibited good linearity, with a correlation coefficient of 0.996. The limits of detection varied between 0.001 (phenanthrene) and 0.021 mg/g (benzo[ghi]perylene), and the limits of quantification varied between 0.004 (phenanthrene) and 0.069 mg/g (benzo[ghi]perylene). The relative recoveries of the 16 polycyclic aromatic hydrocarbons were 70.26–102.99%.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here