z-logo
Premium
Improved purification of immunoglobulin G from plasma by mixed‐mode chromatography
Author(s) -
Chai DongSheng,
Sun Yan,
Wang XiaoNing,
Shi QingHong
Publication year - 2014
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201400554
Subject(s) - chemistry , chromatography , adsorption , affinity chromatography , elution , immunoglobulin g , yield (engineering) , ligand (biochemistry) , tandem affinity purification , size exclusion chromatography , antibody , organic chemistry , biochemistry , receptor , materials science , biology , metallurgy , immunology , enzyme
Efficient loading of immunoglobulin G in mixed‐mode chromatography is often a serious bottleneck in the chromatographic purification of immunoglobulin G. In this work, a mixed‐mode ligand, 4‐(1 H ‐imidazol‐1‐yl) aniline, was coupled to Sepharose Fast Flow to fabricate AN SepFF adsorbents with ligand densities of 15–64 mmol/L, and the chromatographic performances of these adsorbents were thoroughly investigated to identify a feasible approach to improve immunoglobulin G purification. The results indicate that a critical ligand density exists for immunoglobulin G on the AN SepFF adsorbents. Above the critical ligand density, the adsorbents showed superior selectivity to immunoglobulin G at high salt concentrations, and also exhibited much higher dynamic binding capacities. For immunoglobulin G purification, both the yield and binding capacity increased with adsorbent ligand density along with a decrease in purity. It is difficult to improve the binding capacity, purity, and yield of immunoglobulin G simultaneously in AN SepFF chromatography. By using tandem AN SepFF chromatography, a threefold increase in binding capacity as well as high purity and yield of immunoglobulin G were achieved. Therefore, the tandem chromatography demonstrates that AN SepFF adsorbent is a practical and feasible alternative to MEP HyperCel adsorbents for immunoglobulin G purification.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom