Premium
Nonwoven polypropylene as a novel extractant phase holder for the determination of insecticides in environmental water samples
Author(s) -
Hu Lu,
Li Songqing,
Zhang Panjie,
Yang Xiaoling,
Yang Miyi,
Lu Runhua,
Gao Haixiang
Publication year - 2014
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201400459
Subject(s) - polypropylene , chromatography , extraction (chemistry) , detection limit , solvent , chemistry , volume (thermodynamics) , nonwoven fabric , fiber , physics , organic chemistry , quantum mechanics
In this work, a novel liquid‐phase microextraction approach using nonwoven polypropylene as the extraction solvent holder was developed. Nonwoven polypropylene, a hydrophobic material, is widely used in the cleanup of oil spills. Due to its large surface area, efficient, and full extraction can be achieved. Nonwoven polypropylene containing an ionic liquid was used to extract benzoylurea insecticides (diflubenzuron, teflubenzuron, flufenoxuron, and chlorfluazuron) through vortex‐assisted liquid–liquid microextraction. The parameters that affected the extraction efficiency included the type and volume of the extractant, the extraction time, the time and solvent volume for desorption and the mass and surface area of the nonwoven polypropylene. Under the optimized conditions, good linearity was obtained, with coefficients of determination greater than 0.9996, and the limit of detections of these compounds, calculated at S/N = 3, were in the range of 0.73–5.0 ng/mL. The recoveries of the four insecticides at two spiked levels ranged from 93.3 to 102.0%, with relative standard deviations of less than 4.0%. The proposed method was then successfully used for the rapid determination of benzoylurea insecticides in spiked real water samples before liquid chromatographic analysis. The procedure is simple, inexpensive, easy to execute, and can be widely used.