Premium
Preparation of Keggin‐type phosphomolybdate by a one‐step solid‐state reaction at room temperature and its application in protein adsorption
Author(s) -
Chen Qing,
Shen LiMing,
Xia Jie,
Chen XuWei,
Wang JianHua
Publication year - 2014
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201400401
Subject(s) - chemistry , adsorption , thermogravimetric analysis , langmuir adsorption model , hemoglobin , sodium dodecyl sulfate , sorption , inorganic chemistry , chromatography , nuclear chemistry , organic chemistry
Keggin‐type phosphomolybdate ((C 19 H 42 N) 3 PMo 12 O 40 ) is prepared by a one‐step solid‐state reaction at room temperature and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, and elemental analysis. The as‐prepared phosphomolybdate is demonstrated to be an efficient adsorbent for proteins. In this particular case, the selective adsorption of neutral protein hemoglobin is achieved. While under the same conditions virtually no adsorption of acidic and basic proteins, represented by bovine serum albumin and cytochrome c, are observed. A solid‐phase extraction procedure is developed for the selective isolation of hemoglobin. At pH 6, a sorption efficiency of 91.4% is achieved for 100 μg/mL hemoglobin in 1.0 mL solution by using 5.0 mg of the phosphomolybdate. The adsorption behavior of hemoglobin fits well with a Langmuir adsorption model, corresponding to a theoretical adsorption capacity of 55.86 mg/g. The retained hemoglobin could be readily recovered by using a 60 mmol/L imidazole solution at pH 7, giving rise to a recovery of 64.7%. The practical application of phosphomolybdate for protein adsorption is demonstrated by the selective isolation of hemoglobin from human whole blood followed by a sodium dodecyl sulfate polyacrylamide gel electrophoresis assay.