Premium
Rapid and subnanomolar assay of recombinant human erythropoietin by capillary electrophoresis using NanoOrange precolumn labeling and laser‐induced fluorescence detection
Author(s) -
Pang Nannan,
Bai Yu,
Zhou Yu,
Yang Xia,
Zhang Zhengxiang,
Nie Honggang,
Fu Xiaofang,
Liu Huwei
Publication year - 2014
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201400263
Subject(s) - capillary electrophoresis , fluorescence , chromatography , chemistry , recombinant dna , laser induced fluorescence , erythropoietin , fluorescent labelling , microbiology and biotechnology , biology , biochemistry , optics , genetics , physics , gene
Because of less functionally critical carbohydrate sectors that contributed to the stability, efforts have been made to quantify intact recombinant human erythropoietin. A simple, rapid capillary electrophoresis with laser‐induced fluorescence method for the assay of recombinant human erythropoietin was developed, with a limit of detection of intact recombinant human erythropoietin at subnanomolar concentration (up to 10 ng/mL or 3 × 10 −10 M), which is among the lowest reported. High sensitivity was accomplished by precolumn derivatization with the noncovalent dye NanoOrange. Capillary electrophoresis separation and reaction conditions were carefully manipulated for avoiding microheterogeneity of glycoforms and inhomogeneity of multiple labeling products. The fluorescence signal was linear over the range of 10 ng/mL–10 μg/mL, corresponding to the detection requirement of recombinant human erythropoietin in biofluids and pharmaceutical samples, as demonstrated by a real sample analysis. Although the salt in reaction mixtures showed a detrimental effect on the fluorescence of the derivatives, this method could tolerate a certain amount of salt, extending its application in biofluid analysis. In addition, zero‐order fluorescence emission kinetics was obtained, indicating that the rapid decay of recombinant human erythropoietin was derived from a self‐quenching effect.