Premium
Molecularly imprinted polymers on the surface of silica microspheres via sol‐gel method for the selective extraction of streptomycin in aqueous samples
Author(s) -
Junjie Li,
Mei Yang,
Danqun Huo,
Changjun Hou,
Xianliang Li,
Guomin Wang,
Dan Feng
Publication year - 2013
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201200869
Subject(s) - tetraethyl orthosilicate , molecularly imprinted polymer , polymer , molecular imprinting , adsorption , chemistry , aqueous solution , selectivity , chromatography , solvent , nuclear chemistry , chemical engineering , organic chemistry , engineering , catalysis
Streptomycin‐imprinted silica microspheres were prepared by combining a surface molecular‐imprinting technique with the sol‐gel method. A mixture of tetrahydrofuran, ethanol, and water (6:1:1, v/v/v) was selected as dispersing solvent while 3‐aminopropyltriethoxysilane and triethoxyphenylsilane acted as functional monomers, and tetraethyl orthosilicate as a cross‐linker. Characterization of the molecularly imprinted polymers was conducted using scanning electron microscope and dynamic binding experiments. As compared to the nonimprinted polymers, the imprinted polymers exhibited a higher degree of saturated adsorption volume up to 26.3 mg/g, and better selectivity even in an aqueous solution with interfering compounds, including dihydrostreptomycin, neomycin, and tetracycline. The adsorption ability and selectivity were observed to be influenced by the mole ratio of 3‐aminopropyltriethoxysilane and triethoxyphenylsilane. Feasibility of the polymers to be used for actual application was also evaluated with spiked samples, indicating great potential for large‐scale applications. Moreover, the streptomycin‐imprinted polymers can be repeatedly used for 12 cycles without losing original performance, which is beneficial for commercial use.