Premium
Optimization of lytic phage manufacturing in bioreactor using monolithic supports
Author(s) -
Smrekar Franc,
Ciringer Mateja,
Jančar Janez,
Raspor Peter,
Štrancar Aleš,
Podgornik Aleš
Publication year - 2011
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201100182
Subject(s) - lytic cycle , titer , lysis , bacteriophage , chromatography , escherichia coli , methacrylate , phagemid , chemistry , dna , recombinant dna , biology , virology , polymerization , biochemistry , virus , polymer , organic chemistry , gene
A process for manufacturing large quantities of lytic bacteriophages was developed. Determination of cultivation termination was found to be essential to achieve high phage quantity and purity. When optimal cultivation termination is missed, phage fraction was found to be highly contaminated with deoxyribonucleic acid released from Escherichia coli cells. Besides, an already established method for monitoring of phage cultivation based on optical density, where its peak indicates point when maximal phage titer is achieved, a new indirect chromatographic method using methacrylate monoliths is proposed for on‐line estimation of phage titer. It is based on the measurement of released E. coli deoxyribonucleic acid and shows high correlation with phage titer obtained from plaque assay. Its main advantage is that the information is obtained within few minutes. In addition, the same method can also be used to determine purity of a final phage fraction. Two strategies to obtain highly pure phage fractions are proposed: an immediate purification of phage lysate using monolithic columns or an addition of EDTA before chromatographic purification. The developed protocol was shown to give phage purity above 90% and it is completed within one working day including cultivation and phage titer in the final formulation using developed chromatographic method.