Premium
Ionic liquid‐bonded polysiloxane as stationary phase for capillary gas chromatography
Author(s) -
Sun Xiaojie,
Wu Caiying,
Xing Jun
Publication year - 2010
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201000030
Subject(s) - chemistry , alkylbenzenes , ionic liquid , selectivity , naphthalene , solvation , chromatography , structural isomer , phase (matter) , sulfolane , ionic bonding , analytical chemistry (journal) , organic chemistry , benzene , molecule , solvent , ion , catalysis
Abstract Ionic liquid (IL) stationary phase is especially suitable for separation of complex samples, owing to the “dual nature” of IL. In this study, a synthetic method of ionic liquid‐bonded polysiloxane (PSOIL) as stationary phase of GC was proposed. Then, the PSOIL was used to prepare an 8 m capillary column by static method. The column efficiency was measured to be about 4000 plates/m ( k =3.55, naphthalene) after the column had been conditioned at 210°C. The durability of PSOIL column was better than that of the mixed stationary phase of IL and OV‐1. Moreover, the Abraham solvation parameter model was employed to characterize the PSOIL. The result revealed that the PSOIL had stronger dispersion force ( l ) than neat IL and stronger hydrogen bond basicity ( a ) than DB‐1. That meant the PSOIL might offer good selectivity for both polar and non‐polar analytes. The column exhibited unique selectivity for various organic substances, such as the homologous compounds of alkanes, esters, alcohols and aromatic compounds. It was also found that some aromatic positional isomers could be separated better on the PSOIL column than on the DB‐1 column. Furthermore, the stationary phase was suitable for separation of high‐boiling point compounds such as polycyclic aromatic hydrocarbons, phthalic esters, etc . All of these demonstrated that the PSOIL offered good selectivity and high separation efficiency for a wide range of analytes.