Premium
Quantitative determination of fluoxetine in human serum by high performance thin layer chromatography
Author(s) -
Mennickent Sigrid,
Fierro Ricardo,
Vega Mario,
De Diego Marta,
Godoy C. Gloria
Publication year - 2010
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.200900832
Subject(s) - chromatography , thin layer chromatography , fluoxetine , chemistry , high performance liquid chromatography , high performance thin layer chromatography , thin layer , layer (electronics) , biochemistry , serotonin , organic chemistry , receptor
Abstract A high performance thin layer chromatographic method was developed and validated for the quantification of fluoxetine in human serum. Fluoxetine was extracted by liquid–liquid extraction method with diethyl ether as extraction solvent. Imipramine was used as internal standard. The chromatographic separation was achieved on precoated silica gel F 254 high performance thin layer chromatographic plates using a mixture of toluene/acetic acid glacial (4:5 v/v) as mobile phase. 4‐Dimethylamino‐azobenzene‐4‐sulphonyl chloride was used as derivatization reagent. Densitometric detection was done at 272 nm. The method was linear between 12.5 and 87.5 ng/spot, corresponding to 0.05 and 0.35 ng/μL of fluoxetine in human serum after extraction process and applying 25 μL to the chromatographic plates. The method correlation coefficient was 0.999. The intra‐assay and inter‐assay precisions, expressed as the RSD, were in the range of 0.70–2.01% ( n =3) and 0.81–3.90% ( n =9), respectively. The LOD was 0.23 ng, and the LOQ was 0.70 ng. The method proved be accurate, with a recovery between 94.75 and 98.95%, with a RSD not higher than 3.61% and was selective for the active principle tested. This method was successfully applied to quantify fluoxetine in patient serum samples. In conclusion, the method is useful for quantitative determination of fluoxetine in human serum.