Premium
Dynamic control of split flow in packed column supercritical fluid chromatography using dual resistively heated restrictors
Author(s) -
Li Jian Jun,
Thurbide Kevin B.
Publication year - 2009
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.200900177
Subject(s) - chemistry , supercritical fluid chromatography , chromatography , packed bed , analytical chemistry (journal) , isobaric process , volumetric flow rate , flame ionization detector , supercritical fluid , detector , injection port , gas chromatography , flow (mathematics) , mechanics , materials science , thermodynamics , composite material , optics , physics , organic chemistry
Remote control of the vent/detector split flow ratio in packed column supercritical fluid chromatography (pSFC) with flame ionization detector (FID) is demonstrated using a dual heated restrictor method. Restrictors stemming from a Tee at the separation column outlet were, respectively, fixed into an FID and a vent port, and their individual temperatures were controlled using resistively heated wires. Subsequently, both system pressure and split flow could be manipulated. For example, for applied restrictor temperatures examined up to 600°C, corresponding vent/FID split flow ratios between 2 and 7 were observed depending on the port heated. As well, column pressures around 16–23 MPa were also achievable over the same range. Conversely, isobaric altering of the split flow ratio was possible when opposing positive and negative temperature gradients were applied at the two restrictors. Under these conditions, the system pressure varied less than 1% RSD over a 10 min period. As an application, the method was used to establish stable detector operation in the analysis of n ‐alkanes under pSFC‐FID conditions that initiated flame instability. Results indicate that this technique could be a relatively simple and inexpensive means of controlling system pressure and detector split flow ratios in pSFC‐FID.