Premium
Multivariate approach for the enantioselective analysis in MEKC‐MS: II. Optimization of 1,1′‐binaphthyl‐2,2′‐diamine in positive ion mode
Author(s) -
He Jun,
Shamsi Shahab A.
Publication year - 2009
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.200800711
Subject(s) - chemistry , enantiomer , resolution (logic) , pulmonary surfactant , central composite design , chromatography , diamine , analytical chemistry (journal) , response surface methodology , enantioselective synthesis , ammonium acetate , ammonium , stereochemistry , organic chemistry , high performance liquid chromatography , artificial intelligence , computer science , catalysis , biochemistry
Enantiomeric separation and detection of 1,1′‐binaphthyl‐2,2′‐diamine (BNA) has been successfully optimized by MEKC‐ESI‐MS using a polymeric surfactant polysodium N ‐undecenoxycarbonyl‐L‐leucinate (poly‐L‐SUCL) as a pseudostationary phase. In the first step, MEKC conditions were optimized by a five‐factor three‐level central composite design (CCD) of experiment. All five MEKC factors (buffer pH, percentage of ACN in the running buffer, concentration of surfactant, concentration of ammonium acetate (NH 4 OAc), and voltage) were found significant to the responses (measured as the chiral resolution and analysis time). The interactions between MEKC factors were further evaluated using a quadratic model equation which allowed the generation of 3‐D response surface image to reach the optimum conditions. To obtain the best S/N, sheath liquid composition and spray chamber parameters were successfully optimized using the same strategy. Baseline enantiomeric resolution in less than 20 min and optimum MS signal of BNA enantiomers (S/N = 45 at 0.4 mg/mL) were ultimately achieved at the optimized conditions. The adequacy of the model was validated by experimental runs at the optimal predicted conditions. The predicted results were found to be in good agreement with the experimental data.