Premium
Analytical determination of polyphenols in olive oils
Author(s) -
CarrascoPancorbo Alegria,
Cerretani Lorenzo,
Bendini Alessandra,
SeguraCarretero Antonio,
GallinaToschi Tullia,
FernándezGutiérrez Alberto
Publication year - 2005
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.200500032
Subject(s) - chromatography , polyphenol , chemistry , gas chromatography , high performance liquid chromatography , phenols , extraction (chemistry) , sample preparation , fraction (chemistry) , oleic acid , vegetable oil , capillary electrophoresis , solid phase extraction , food science , organic chemistry , antioxidant , biochemistry
The increasing popularity of olive oil is mainly attributed to its high content of oleic acid, which may affect the plasma lipid/lipoprotein profiles, and its richness in phenolic compounds, which act as natural antioxidants and may contribute to the prevention of human disease. An overview of analytical methods for the measurement of polyphenols in olive oil is presented. In principle, the analytical procedure for the determination of individual phenolic compounds in virgin olive oil involves three basic steps: extraction from the oil sample, analytical separation, and quantification. A great number of procedures for the isolation of the polar phenolic fraction of virgin olive oil, utilizing two basic extraction techniques, LLE or SPE, have been included. The reviewed techniques are those based on spectrophotometric methods, as well as analytical separation (gas chromatography (GC), high‐performance liquid chromatography (HPLC), and capillary electrophoresis (CE)). Many reports in the literature determine the total amount of phenolic compounds in olive oils by spectrophometric analysis and characterize their phenolic patterns by capillary gas chromatography (CGC) and, mainly, by reverse phase high‐performance liquid chromatography (RP‐HPLC); however, CE has recently been applied to the analysis of phenolic compound of olive oil and has opened up great expectations, especially because of the higher resolution, reduced sample volume, and analysis duration. CE might represent a good compromise between analysis time and satisfactory characterization for some classes of phenolic compounds of virgin olive oils.