Premium
Capillary electrochromatography with bare silicas of different pore sizes as stationary phases
Author(s) -
Steiner Frank,
Lobert Thorsten
Publication year - 2003
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.200301555
Subject(s) - capillary electrochromatography , electrochromatography , chemistry , chromatography , analytical chemistry (journal) , size exclusion chromatography , electro osmosis , mass transfer , electrophoresis , stationary phase , biochemistry , enzyme
Bare silica can be used with reversed phase eluents for the chromatographic separation of basic analytes. It provides high surface charge density within a certain pH range, thus generating a high electroosmotic flow (EOF) when applied in electrochromatography. The influence of pore size on EOF velocity and mass transport is demonstrated. High EOF and fast mass transfer were encountered with 100 nm and 200 nm material and related to a pore perfusion mechanism. On a silica with 200 nm average pore size at pH 7, an EOF velocity of 2 mm/s was obtained at 600 V/cm. Silicas with pore diameters between 6 nm and 200 nm, corresponding to surface areas between 500 m/g and 10 m/g (data calculated from inverse size exclusion chromatography experiments), were used for CEC and HPLC separation of strongly basic solutes. On separation of tricyclic antidepressants by CEC, “normal” and “abnormal” efficiencies were achieved and were found to vary with the charge density within the separation column.