z-logo
open-access-imgOpen Access
High throughput computational evaluation of how scaffold architecture, material selection, and loading modality influence the cellular micromechanical environment in tissue engineering strategies
Author(s) -
Page Mitchell I.,
Linde Peter E.,
Puttlitz Christian M.
Publication year - 2021
Publication title -
jor spine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.125
0
ISSN - 2572-1143
DOI - 10.1002/jsp2.1152
Subject(s) - scaffold , tissue engineering , biomedical engineering , extracellular matrix , materials science , decellularization , ultimate tensile strength , composite material , chemistry , engineering , biochemistry
Background In tissue engineering (TE) strategies, cell processes are regulated by mechanical stimuli. Although TE scaffolds have been developed to replicate tissue‐level mechanical properties, it is intractable to experimentally measure and prescribe the cellular micromechanical environment (CME) generated within these constructs. Accordingly, this study aimed to fill this lack of understanding by modeling the CME in TE scaffolds using the finite element method. Methods A repeating unit of composite fiber scaffold for annulus fibrosus (AF) repair with a fibrin hydrogel matrix was prescribed a series of loading, material, and architectural parameters. The distribution of CME in the scaffold was predicted and compared to proposed target mechanics based on anabolic responses of AF cells. Results The multi‐axial loading modality predicted the greatest percentage of cell volumes falling within the CME target envelope (%PTE) in the study (65 %PTE for 5.0% equibiaxial tensile strain with 50 kPa radial‐direction compression; 7.6 %PTE without radial pressure). Additionally, the architectural scale had a moderate influence on the CME (maximum of 17 %PTE), with minimal change in the tissue‐level properties of the scaffold. Scaffold materials and architectures had secondary influences on the predicted regeneration by modifying the tissue‐level scaffold mechanics. Conclusions Scaffold loading modality was identified as the critical factor for TE the AF. Scaffold materials and architecture were also predicted to modulate the scaffold loading and, therefore, control the CME indirectly. This study facilitated an improved understanding of the relationship between tissue‐level and cell‐level mechanics to drive anabolic cell responses for tissue regeneration.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here