Premium
A portable driving system for high‐resolution active matrix electrowetting display based on FPGA
Author(s) -
Yang Guisong,
Liu Linwei,
Zheng Zhiwen,
Henzen Alex,
Xi Kerui,
Bai Pengfei,
Zhou Guofu
Publication year - 2020
Publication title -
journal of the society for information display
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 52
eISSN - 1938-3657
pISSN - 1071-0922
DOI - 10.1002/jsid.854
Subject(s) - electrowetting , field programmable gate array , computer science , backplane , computer hardware , active matrix , scalability , embedded system , electronic circuit , voltage , electrical engineering , materials science , engineering , thin film transistor , layer (electronics) , database , composite material
How to display pictures and even videos on electrowetting displays (EWDs) still needs improvement. Therefore, we seek to develop a robust, portable and scalable system for the realization of high‐resolution EWDs. In this paper, a driving system for an 8 inch active matrix electrowetting display (AM‐EWD) based on a Field‐Programmable‐Gate‐Array (FPGA) is proposed, where the key components are an active matrix backplane, an FPGA driving waveform and driver integrated circuits (ICs). We successfully demonstrate an AM‐EWD with 1024×768 resolution and 16‐level gray‐scale realized by unique dynamic and asymmetric sub‐frame of FPGA. The whole system is just powered by a 3.7V 1100mAH lithium battery. Such a system has not been reported before, also well‐suited for transferring to a higher performance portable EWD in the future.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom