z-logo
Premium
High‐resolution and compact virtual mouse using lens arrays to capture finger images on light sensors
Author(s) -
Qin Zong,
Chang YuCheng,
Su YuJie,
Huang YiPai,
Shieh HanPing D.
Publication year - 2017
Publication title -
journal of the society for information display
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 52
eISSN - 1938-3657
pISSN - 1071-0922
DOI - 10.1002/jsid.613
Subject(s) - computer science , resolution (logic) , touchscreen , lens (geology) , pixel , artificial intelligence , display resolution , volume (thermodynamics) , computer vision , optics , computer graphics (images) , computer hardware , display device , physics , quantum mechanics , operating system
To realize a finger positioning device, as called “virtual mouse,” to replace a touchpad, touchscreen, or even real mouse, current positioning technologies cannot achieve a sufficient resolution, a compact volume, and a simple detection algorithm simultaneously. For this problem, using a light‐emitting diode source, two lens arrays, and two light sensors, we design and implement a virtual mouse prototype. The optical architecture is carefully determined for a compact volume, a sufficient resolution, and a high detection accuracy. Corresponding to a compact system volume of 3.1 mm (thickness) × 4.5 mm (length) × 2, a theoretical resolution higher than 25 pixels per inch (ppi) can be obtained over a working area of 10 cm × 10 cm. Experiments are also implemented, in which a mean detection error of 0.24 cm that corresponds to approximately two distinguishable points, and a minimal resolution of 26 ppi over the whole working area are verified. If the system thickness is relaxed to 25 mm, a resolution higher than 200 ppi can be achieved. The proposed virtual mouse, which is simple enough and potential to be extended for three‐dimensional position detection, can be integrated with a flat panel display to achieve a compact display application that can interact with users.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom