Premium
Cost–benefit analysis of tomato in soilless culture systems with saline water under greenhouse conditions
Author(s) -
CámaraZapata José M,
BrotonsMartínez José M,
SimónGrao Silvia,
MartinezNicolás Juan J,
GarcíaSánchez Francisco
Publication year - 2019
Publication title -
journal of the science of food and agriculture
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.782
H-Index - 142
eISSN - 1097-0010
pISSN - 0022-5142
DOI - 10.1002/jsfa.9857
Subject(s) - perlite , hydroponics , salinity , environmental science , greenhouse , fertigation , irrigation , saline water , water use , agronomy , agricultural engineering , horticulture , biology , engineering , ecology
BACKGROUND The current need to produce food for a growing population, from diminishing natural resources, such as water and energy, and with minimum environmental degradation, demands the optimization of production. We compare the economic feasibility of tomato production in an open system with a perlite substrate, a closed system with the nutrient film technique (NFT), and a hydroponic crop (deep flow technique, DFT) using three levels of salinity that are found within the normal range for irrigation water quality in southeastern Spain. RESULTS Production with DFT resulted in an increase in the cost of phytosanitary treatments and the cost of maintenance. Production with perlite resulted in an increase in the cost of irrigation water and fertilization, and the use of NFT resulted in an increase in energy costs. The point of price equilibrium was exceeded in the three soilless systems when using low salinity water, and in perlite, with intermediate salinity water. CONCLUSION Profitability was reduced in the following order: perlite > NFT > DFT. There were positive results when using irrigation water with low salinity, and in the case of perlite, with intermediate salinity. In every case, salinity reduced the profitability of the operation, and this was greater when NFT was employed. The analysis of these soilless systems should be continued to determine the possibility of reducing cultivation costs. © 2019 Society of Chemical Industry