Premium
Tea diseases detection based on fast infrared thermal image processing technology
Author(s) -
Yang Ning,
Yuan Minfeng,
Wang Pan,
Zhang Rongbiao,
Sun Jun,
Mao Hanping
Publication year - 2019
Publication title -
journal of the science of food and agriculture
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.782
H-Index - 142
eISSN - 1097-0010
pISSN - 0022-5142
DOI - 10.1002/jsfa.9564
Subject(s) - hue , thresholding , artificial intelligence , image processing , computer science , pattern recognition (psychology) , computer vision , thermal infrared , pixel , infrared , mathematics , image (mathematics) , optics , physics
BACKGROUND As one of China's important economic crops, tea is economically damaged due to its large yield. The overall goal of this study is to develop an effective, simple, apt computer vision algorithm to detect tea disease area using infrared thermal image processing techniques and to estimate tea disease. RESULTS This paper finds that the area of tea disease has certain regularity with its infrared image gray distribution. Using this rule, we extracted two characteristic parameters into a classifier to help achieve rapid tea disease detection, which increases the accuracy of detection a small amount. The tea disease detection algorithm consisted of the following steps: classify canopy infrared thermal image; convert red, green and blue image to hue, saturation and value; thresholding; color identification; noise filtering; binarization; closed operation; and counting. A correlation coefficient R 2 of 0.97 was obtained between the tea disease detection algorithm and counting performed through human observation, which is 2% higher than traditional algorithms without classifiers. CONCLUSIONS This article provides guidance for monitoring the condition of tea gardens with airborne thermal imaging cameras. © 2019 Society of Chemical Industry