Premium
Apple extract induces increased epithelial resistance and claudin 4 expression in Caco‐2 cells
Author(s) -
Vreeburg Robert AM,
van Wezel Esther E,
OcañaCalahorro Francisco,
Mes Jurriaan J
Publication year - 2011
Publication title -
journal of the science of food and agriculture
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.782
H-Index - 142
eISSN - 1097-0010
pISSN - 0022-5142
DOI - 10.1002/jsfa.4598
Subject(s) - paracellular transport , caco 2 , claudin , tight junction , intestinal epithelium , microbiology and biotechnology , epithelium , occludin , biology , chemistry , permeability (electromagnetism) , biochemistry , cell , genetics , membrane
BACKGROUND: The small intestinal epithelium functions both to absorb nutrients, and to provide a barrier between the outside, luminal, world and the human body. One of the passageways across the intestinal epithelium is paracellular diffusion, which is controlled by the properties of tight junction complexes. We used a differentiated Caco‐2 monolayer as a model for small intestinal epithelium to study the effect of crude apple extracts on paracellular permeability. RESULTS: Exposure of crude apple homogenate to the differentiated Caco‐2 cells increased the paracellular resistance, determined as trans‐epithelial electrical resistance (TEER). This increase was linearly related to the concentration of apple present. The TEER‐enhancing effect of apple extract was due to factors mainly present in the cortex, and the induction was not inhibited by protein kinase inhibitors. Apple‐induced resistance was accompanied by increased expression of several tight junction related genes, including claudin 4 ( CLDN4 ). CONCLUSION: Crude apple extract induces a higher paracellular resistance in differentiated Caco‐2 cells. Future research will determine whether these results can be extrapolated to human small intestinal epithelia. Copyright © 2011 Society of Chemical Industry