z-logo
Premium
In vitro digestion of fresh alfalfa under different conditions of ruminal pH
Author(s) -
Palladino Rafael A,
Wawrzkiewicz Marisa,
Danelón Jose L,
Gaggiotti Monica,
Jaurena Gustavo
Publication year - 2009
Publication title -
journal of the science of food and agriculture
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.782
H-Index - 142
eISSN - 1097-0010
pISSN - 0022-5142
DOI - 10.1002/jsfa.3847
Subject(s) - rumen , digestion (alchemy) , dry matter , chemistry , agronomy , neutral detergent fiber , food science , zoology , total mixed ration , fodder , biology , fermentation , chromatography , pregnancy , genetics , lactation , ice calving
BACKGROUND: Relatively low ruminal pH values have been frequently registered in dairy cows grazing alfalfa, which can be involved in reducing feed digestion. An in vitro experiment was carried out to study the effect of ruminal pH (6.4, 6.1, 5.8 and 5.5) on the digestion of fresh alfalfa. RESULTS: Decreasing the pH, in vitro gas production (ivGP) decreased ( P < 0.05). The lowest ivGP was registered at pH 5.5 and it was product of a higher lag time and a lower digestion rate. Dry matter disappearance (DMD) was not affected by pH at 48 h ( P > 0.05). Neutral detergent disappearance (NDFD) at 48 h decreased below pH 6.1. The NDFD was reduced by 62% at pH 5.5 with respect to results at pH 6.4 and 6.1 (where the highest DMD and NDFD were observed). CONCLUSION: As expected, low rumen pH decreased alfalfa digestion. However, limits to ruminal digestion activity differed from those usually proposed for TMR diets. It is apparent that different relationships between rumen pH and NDFD exist when cows graze fresh alfalfa or grasses. Moreover, our results suggest the convenience to complement the data obtained through ivGP, DMD and NDFD. While ivGP and DMD seem to be more useful at early digestion times, NDFD may be a good predictor of final digestion. Copyright © 2009 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here