Premium
Development of novel species‐specific primers for species identification of the Lactobacillus casei group based on RAPD fingerprints
Author(s) -
Huang ChienHsun,
Lee FwuLing
Publication year - 2009
Publication title -
journal of the science of food and agriculture
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.782
H-Index - 142
eISSN - 1097-0010
pISSN - 0022-5142
DOI - 10.1002/jsfa.3658
Subject(s) - biology , lactobacillus casei , rapd , polymerase chain reaction , primer (cosmetics) , probiotic , lactobacillus , 16s ribosomal rna , lactobacillus rhamnosus , lactobacillus paracasei , genotype , genetics , microbiology and biotechnology , bacillus pumilus , bacteria , genetic diversity , gene , population , chemistry , demography , organic chemistry , sociology
BACKGROUND: It is difficult to clearly distinguish and identify specific species of the Lactobacillus casei group using phenotypic and genotypic (16S ribosomal DNA sequence analysis) techniques alone. Some species of this group are probiotic and are widely used in the food and feed industries. The objective of this study was to develop species‐specific primers based on randomly amplified polymorphic DNA (RAPD) fingerprinting for species identification within the closely related L. casei group of bacteria. RESULTS: Three random primers termed OPT‐14, OPA‐11 and OPT‐16 were developed for analysis. The primer pairs each produced a species‐specific band found only in the tested Lactobacillus rhamnosus, Lactobacillus paracasei subsp. tolerans and Lactobacillus zeae isolates respectively. These specific fragments were then sequenced for further analysis. The species‐specific primers were designed according to cloned sequencing, which was employed for polymerase chain reaction (PCR) with the template DNA of Lactobacillus strains. Single 102, 179 and 451 bp species‐specific bands were found only in L. rhamnosus, L. paracasei subsp. tolerans and L. zeae respectively. CONCLUSION: Using PCR, the novel species‐specific primers have been shown to rapidly, accurately and effectively identify species of L. rhamnosus, L. paracasei subsp. tolerans and L. zeae from within the L. casei group of probiotic bacteria. Copyright © 2009 Society of Chemical Industry