z-logo
Premium
Influence of sn ‐1,3‐lipase‐catalysed interesterification on the oxidative stability of soybean oil‐based structured lipids
Author(s) -
Turan Semra,
Karabulut Ihsan,
Vural Halil
Publication year - 2006
Publication title -
journal of the science of food and agriculture
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.782
H-Index - 142
eISSN - 1097-0010
pISSN - 0022-5142
DOI - 10.1002/jsfa.2679
Subject(s) - chemistry , butylated hydroxyanisole , butylated hydroxytoluene , interesterified fat , ascorbyl palmitate , soybean oil , lipase , peroxide value , antioxidant , chromatography , organic chemistry , food science , nuclear chemistry , enzyme
The oxidative stability of structured lipids (SLs) synthesised by specific sn ‐1,3‐lipase catalysed interesterification of soybean oil (SBO) with caprylic acid (CA) in a stirred batch reactor was studied. SLs contained considerable amounts of tocopherol (TOH) isomers, although they lost almost 25% of endogenous TOHs during production. The effects of the addition of different TOH homologues (α, β, γ, δ), ascorbyl palmitate (AP, 200 ppm), lecithin (Le, 1000 ppm), butylated hydroxytoluene (BHT, 100 ppm) and butylated hydroxyanisole (BHA, 100 ppm) on the oxidative stability of SLs were investigated. Induction time (IT) of SBO, determined by the Rancimat method, decreased from 8.4 to 5.8 h at 110 °C after the modification. On the other hand, purified SLs and purified SBO had the same IT due to the tocopherol reduction during silica purification. No significant difference was observed between IT of SLs and SLs plus different α‐tocopherol concentrations (50, 100, 150, 200, 300, 500 and 1000 ppm) ( P > 0.05). However, the addition of Le and/or AP significantly improved oxidative stability of purified SLs and SBO. The ternary blend containing δ‐TOH, AP and Le had higher IT than ternary blends of α‐TOH, β‐TOH or γ‐TOH. Furthermore, ternary blend containing BHA, AP and Le had higher IT than ternary blends of BHT, AP and Le. In addition, there was an increase in peroxide value (PV), conjugated diene (CD) content and p ‐anisidine value (AV) during oxidation of oils at 60 °C. Antioxidant mixtures of α‐TOH (50 ppm) and δ‐TOH (500 ppm) with AP and Le decreased PV, CD and AV effectively. Copyright © 2006 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here