Premium
Profiles of volatile compounds and sensory analysis of three blends of coffee: influence of different proportions of Arabica and Robusta and influence of roasting coffee with sugar
Author(s) -
Sanz Cristina,
Maeztu Laura,
Zapelena Ma Jose,
Bello José,
Cid Concepción
Publication year - 2002
Publication title -
journal of the science of food and agriculture
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.782
H-Index - 142
eISSN - 1097-0010
pISSN - 0022-5142
DOI - 10.1002/jsfa.1110
Subject(s) - roasting , chemistry , sugar , terpene , food science , coffea arabica , organic chemistry , botany , biology
One hundred and forty‐six volatile compounds were identified and quantified using a static headspace sampler in three blends of coffee: Arabica/Robusta 80:20 (A80:R20) natural roasted coffee, Arabica/Robusta 20:80 (A20:R80) natural roasted coffee and Arabica/Robusta 20:80 with 50% of Robusta coffee roasted with sugar (A20:R80 50% Torrefacto). The different proportion of Arabica and Robusta coffee in the blend A80:R20 versus A20:R80 influenced the amounts of 20 chemical families of volatile compounds. Aldehydes, ketones, alcohols, pyrroles, pyrazines, furans, thiazoles, thiophenes, esters, oxazoles, lactones, sulphur compounds, pyridines, alkanes, alkenes, phenolic compounds, benzenic compounds, acids, pyranones and terpenes were present in higher quantities in the sample containing 80% of Arabica coffee, whereas sulphur compounds were more abundant in the coffee with 80% of Robusta. Sensory differences were also found between the two blends of coffee in the burnt, caramel, nutty, earthy and roasty notes. Torrefacto coffee, widely consumed in Spain, is obtained by roasting coffee with sugar. Higher quantities of ketones, alcohols, pyrazines, furans, pyridines, alkanes, phenolic compounds, pyranones and terpenes were found in the blend A20:R80 50% Torrefacto coffee versus A20:R80 natural roasted coffee. These differences in the volatile fraction were perceived by our panellists in the intensities of the nutty, roasty, earthy, burnt and caramel notes. © 2002 Society of Chemical Industry