Premium
Supporting role of lignin in immobilization of yeast on sugarcane bagasse for continuous pectinase production
Author(s) -
Ejaz Uroosa,
Sohail Muhammad
Publication year - 2020
Publication title -
journal of the science of food and agriculture
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.782
H-Index - 142
eISSN - 1097-0010
pISSN - 0022-5142
DOI - 10.1002/jsfa.10764
Subject(s) - bagasse , pectinase , lignin , chemistry , fermentation , pulp and paper industry , matrix (chemical analysis) , bioreactor , yeast , substrate (aquarium) , geotrichum , fourier transform infrared spectroscopy , food science , biochemistry , chemical engineering , chromatography , organic chemistry , enzyme , biology , ecology , engineering
BACKGROUND Lignocellulosic wastes are pretreated prior to their utilization in fermentation processes. Such pretreatment also alters the topological features of the substrates, and therefore the suitability of pretreated waste as immobilization matrix for microbial cells needs investigation. RESULTS In this study, the effect of chemical pretreatment of sugarcane bagasse (SB) for its subsequent utilization as a matrix to immobilize a pectinolytic yeast, Geotrichum candidum AA15, was evaluated using cell retention, concentration of immobilized cells, immobilization efficiency, scanning electron microscopy and Fourier transform infrared spectroscopy of the substrate and pectinase titers obtained after recycling. The results revealed that untreated SB is more efficient for immobilization with higher values of cell retention and pectinase productivity (99.78%) retained for up to six production cycles. It was deduced that removal of lignin by pretreatment negatively influenced the ability of SB to support cell adhesion, as lignin acts as a sealing agent that provides strength to the substrate. CONCLUSIONS The strategy of utilizing SB as immobilization matrix was found effective at the laboratory scale as it improved pectinase production and may be investigated further for large‐scale and cost‐effective production. © 2020 Society of Chemical Industry
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom