Premium
Evaluation of processing methods and oral mastication on the carotenoid bioaccessibility of restructured carrot chips
Author(s) -
Yi Jianyong,
Zhao Yuanyuan,
Bi Jinfeng,
Hou Chunhui,
Peng Jian,
Guo Yuxia
Publication year - 2020
Publication title -
journal of the science of food and agriculture
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.782
H-Index - 142
eISSN - 1097-0010
pISSN - 0022-5142
DOI - 10.1002/jsfa.10546
Subject(s) - carotenoid , food science , mastication , chemistry , digestion (alchemy) , chromoplast , biology , biochemistry , chromatography , paleontology , plastid , chloroplast , gene
BACKGROUND Carrot carotenoids are typically located in chromoplasts, forming a crystalline substructure. Cell walls and chromoplasts therefore constitute two major physical barriers to the release of carotenoids from the food matrix during digestion. The release of carotenoids from these physical barriers is supposed to be substantially affected by mechanical factors during food processing and oral mastication. Given the implications of this, the effects of four different processing procedures, and various mastication levels, on the carotenoid bioaccessibility of carrot chips were evaluated. RESULTS Restructuring and drying methods substantially affected the carotenoid bioaccessibility of carrot chips. The highest carotenoid bioaccessibility was obtained for the air‐dried combined with instant pressure‐drop‐dried (AD‐DIC) restructured chips. Although the fresh carrots possessed the highest carotenoid content, their bioaccessibility was lower than that of the carrot chips. The evolution of the particle sizes of the samples was responsible for the changes in carotenoid bioaccessibility due to oral masitication. The particle size of the fresh carrots decreased with increasing oral masitication, which favored carotenoid bioaccessibilty. However, the restructured chips that combined freeze drying with instant pressure‐drop drying (R‐FD‐DIC) demonstrated the opposite trend, probably caused by the severe aggregation of the sample during digestion, which compromised the effect of mastication on the release of carotenoid. CONCLUSION Data regarding the effects of the drying process and oral mastication digestion behavior on the samples suggested that AD‐DIC‐dried restructured carrot chips are effective in enhancing carotenoid bioaccessibility, which explains the key factors involved in the release of carotenoids from carrot chips prepared by different processes. © 2020 Society of Chemical Industry