Premium
Animal wastes as fertilizers enhance growth of young walnut trees under soil drought conditions
Author(s) -
Zhang Yan,
Liu Jing,
Niu Shuqing,
Kong Miao,
Zhang Jie,
Lu Yanfen,
Yao Yuncong
Publication year - 2020
Publication title -
journal of the science of food and agriculture
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.782
H-Index - 142
eISSN - 1097-0010
pISSN - 0022-5142
DOI - 10.1002/jsfa.10380
Subject(s) - agronomy , soil water , nutrient , nitrogen , environmental science , soil organic matter , organic matter , dry weight , dry matter , transpiration , chemistry , photosynthesis , biology , soil science , biochemistry , organic chemistry
BACKGROUND Using nutrient‐rich animal wastes as organic fertilizers in agricultural practices is a sustainable method for soil amendment and avoiding environmental pollution. In order to evaluate their practical effect, we applied different proportions of animal waste as fertilizers to wet or dry soils that were either planted or not planted with young walnut trees. RESULTS The results showed that animal waste could increase soil C accumulation and carbon to nitrogen (C/N) ratio and reduce soil organic nitrogen and total nitrogen contents as well as the nitrogen to phosphorus (N/P) ratio in the planted group soil. This framework of soil C and N composition (a high C/N ratio) resulted in high N and Mg contents as well as high Cu and Zn contents in the leaves of the young trees as well as a high dry matter weight/leaf N ratio, causing increased leaf photosynthesis, reduced transpiration and relatively high water use efficiency under soil drought conditions. Also, animal wastes as fertilizers caused the branching of walnut to switch from elongation growth to thickening growth under soil drought conditions. CONCLUSIONS Principal component analysis and redundancy analysis demonstrated the mechanism by which the soil C/N ratio mediates the flux of available nutrients from the soil to the plant and thereby regulates plant dry matter accumulation and branching architecture under soil drought conditions. The results of this study provide new insights into the improvement of hilly soils using animal waste. © 2020 Society of Chemical Industry