z-logo
Premium
Chromatographic paper embedded with silver nanostructure as a disposable substrate for surface‐enhanced Raman spectroscopy and catalytic reactor
Author(s) -
Nie Bei,
Zhou Qiuhong,
He Jiming,
Yang Fumo
Publication year - 2015
Publication title -
journal of raman spectroscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.748
H-Index - 110
eISSN - 1097-4555
pISSN - 0377-0486
DOI - 10.1002/jrs.4636
Subject(s) - raman spectroscopy , catalysis , substrate (aquarium) , microanalysis , surface enhanced raman spectroscopy , nanostructure , spectroscopy , chemical engineering , chemistry , materials science , nanotechnology , analytical chemistry (journal) , chromatography , raman scattering , organic chemistry , physics , oceanography , engineering , quantum mechanics , optics , geology
The high cost of regular diagnostic kits severely impeded its uses for routine clinical assay and fieldworks. A cost‐effective chromatography paper is chemically modified with Ag nanostructures using the simple electroless silver deposition, producing a scalable and disposable substrate for surface‐enhanced Raman spectroscopy, as well as a large scale of catalytic active sites over many chemical reactions. Synergetic measurement including surface‐enhanced Raman spectroscopy and laser desorption ionization‐mass spectrometry is performed on Ag decorated filter paper using a thiol containing compound as indicator, allowing for the acquisition of spatially correlated spectroscopy in the tandem mode. In addition, hydrophilic porous cellulose network that contains a certain amount of liquid naturally served as a chemical reactor for molecular transport and reaction. Positive results from catalytic reaction on metallized paper convincingly demonstrated that total microanalysis system on paper (μ‐TASoP), as a compelling alternative would find a wide breadth of applications in developing disposable medical devices and customary laboratory assays. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom