z-logo
Premium
A stable ‘sandwich’ system of Surface‐Enhanced Resonance Raman Scattering for the analysis of β‐carotenes in a photosynthetic pigment‐protein complex
Author(s) -
Qin Xiaochun,
Zhu Jiajia,
Wang Wenda,
Ding Xiang,
Wang Kebin,
Fang Yan,
Kuang Tingyun
Publication year - 2013
Publication title -
journal of raman spectroscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.748
H-Index - 110
eISSN - 1097-4555
pISSN - 0377-0486
DOI - 10.1002/jrs.4333
Subject(s) - raman scattering , raman spectroscopy , silver nanoparticle , resonance (particle physics) , nanoparticle , chemistry , analytical chemistry (journal) , pigment , materials science , nanotechnology , optics , physics , atomic physics , chromatography , organic chemistry
In plants, Photosystem I (PSI) is composed of a core complex and a membrane‐associated antenna complex light‐harvesting complex I that captures light and funnels its energy to the core complex. To obtain Raman structural information on β‐carotenes embedded in the PSI core complex, a ‘sandwich’ system of roughened silver slice: target protein complexes: single silver nanoparticles was fabricated for Surface‐Enhanced Resonance Raman Scattering (SERRS) measurements. This study provided a method to overcome spectral irreproducibility, which is the main drawback of Surface‐Enhanced Raman Scattering/SERRS‐based studies. The Raman spectra of β‐carotenes embedded in the PSI core complex can be obtained at very low sample concentrations (1–5 µg Chl/ml) and high signal/noise ratios. The β‐carotenes in the spinach PSI core complex were predominantly all‐trans configuration. The membrane protein‐mediated adsorption of silver nanoparticles induced the uniform distribution of a large number of single nanoparticles, which contributed to achieving highly reproducible SERRS spectra. This study is the first to apply single silver nanoparticle‐based SERRS analysis in membrane proteins. Copyright © 2013 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom