Premium
Raman characterisation of conventional and cross‐linked polyethylene in acetabular cups run on a hip joint simulator
Author(s) -
Taddei P.,
Di Foggia M.,
Affatato S.
Publication year - 2011
Publication title -
journal of raman spectroscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.748
H-Index - 110
eISSN - 1097-4555
pISSN - 0377-0486
DOI - 10.1002/jrs.2867
Subject(s) - joint (building) , polyethylene , raman spectroscopy , cross linked polyethylene , simulation , materials science , computer science , structural engineering , biomedical engineering , engineering , composite material , optics , physics
Five sets of differently sterilised conventional ultra‐high molecular weight polyethylene (UHMWPE) and cross‐linked polyethylene (XLPE) acetabular cups were run for 5 million cycles on a hip joint simulator in order to evaluate their wear behaviour in relation to material properties (PE grade, conventional or cross‐linked) and sterilisation method (ethylene oxide (EtO) treatment or γ‐irradiation). Gravimetric measurements revealed that conventional UHMWPE wore significantly more than XLPE. The differences in wear behaviour could be partly related to the orthorhombic contents obtained by Raman spectroscopy in the unworn areas of the cups: XLPE cups showed a significantly higher crystallinity degree than the UHMWPE specimens. Raman analysis showed that wear testing did not significantly modify the orthorhombic content of any of the tested acetabular cups. However, the set of cups that showed the highest weight loss, i.e. γ‐sterilised PE GUR1020, appeared the most homogeneously polished upon wear testing; from a molecular point of view, only this set of cups showed a significant increase of the I 1130 / I 1060 intensity ratio, suggesting the occurrence of chain orientation. On the other hand, XLPE cups, despite the lowest weight loss undergone, showed a decrease in the amorphous content upon wear testing as well as a limited orthorhombic → monoclinic transformation, which did not appear detrimental. Copyright © 2011 John Wiley & Sons, Ltd.