Premium
Raman and X‐ray diffraction analysis on unburned carbon powder refined from fly ash
Author(s) -
Tai F. C.,
Wei C.,
Chang S. H.,
Chen W. S.
Publication year - 2010
Publication title -
journal of raman spectroscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.748
H-Index - 110
eISSN - 1097-4555
pISSN - 0377-0486
DOI - 10.1002/jrs.2532
Subject(s) - raman spectroscopy , graphite , carbon fibers , materials science , crystallization , diffraction , fly ash , analytical chemistry (journal) , x ray crystallography , powder diffraction , annealing (glass) , mineralogy , chemistry , crystallography , composite material , organic chemistry , optics , physics , composite number
Abstract The bonding and crystalline structures of oil‐fried fly ash collected from a power plant were analyzed by using Raman spectroscopy and X‐ray diffraction (XRD), respectively. These carbon powders underwent a series of annealing treatment for graphitization and crystallization. In Raman spectra, the refined, unburned carbon contains clearly the D, G and D′ peaks under 2000 or 2700 °C treatment. The Raman spectral line shape of refined, unburned carbon heated at 2700 °C is similar to that of commercial graphite made from graphitization process. In the XRD spectra, the refined, unburned carbon contains (002), (100) and (004) diffraction peaks under heating at 2000 or 2700 °C. The XRD spectral line shape of refined, unburned carbon heated at 2700 °C is similar to that of a commercial graphite bar. The quantitative graphitization level from Raman spectra and crystallization degree from XRD spectra on refined, unburned carbon powders serve as preliminary guide for the qualitative evaluation of these unburned carbon powders. Copyright © 2009 John Wiley & Sons, Ltd.