z-logo
Premium
Raman spectra of nitrogen‐containing organic compounds obtained using a portable instrument at −15 °C at 2860 m above sea level
Author(s) -
Jehlička J.,
Culka A.
Publication year - 2010
Publication title -
journal of raman spectroscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.748
H-Index - 110
eISSN - 1097-4555
pISSN - 0377-0486
DOI - 10.1002/jrs.2410
Subject(s) - raman spectroscopy , analytical chemistry (journal) , chemistry , spectrometer , optics , organic chemistry , physics
Well‐resolved Raman spectra of samples of nitrogen‐containing compounds were detected using a portable Raman instrument (Ahura First Defender XL) outdoors at a low ambient temperature of −15 °C and at an altitude of 2860 m (Pitztall, Austria). The portable Raman spectrometer tested here is equipped with a 785‐nm diode laser and a fixed frontal probe. Solid form of formamide, urea, 3‐methylpyridine, aniline, indene, 1‐(2‐aminoethyl)piperazine, indoline and benzofuran were detected unambiguously under high‐mountain field conditions. The main Raman features (strong, medium and partially weak bands) were observed at the correct wavenumber positions (with a spectral resolution 7–10 cm −1 ) in the wavenumber range 200–1600 cm −1 . The results obtained demonstrate the possibility of employing a miniaturised Raman spectrometer as a key instrument for investigating the presence of nitrogen‐containing organic compounds and biomolecules outdoors under low temperature conditions. Within the payload designed by European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) for future missions, focussing not only on Mars, Raman spectroscopy represents an important instrumentation for the detection of organic nitrogen‐containing compounds relevant to life detection on planetary surfaces or near sub‐surfaces. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here