z-logo
Premium
Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin‐A2
Author(s) -
Padmaja L.,
Ravikumar C.,
Sajan D.,
Hubert Joe I.,
Jayakumar V. S.,
Pettit G. R.,
Faurskov Nielsen O.
Publication year - 2009
Publication title -
journal of raman spectroscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.748
H-Index - 110
eISSN - 1097-4555
pISSN - 0377-0486
DOI - 10.1002/jrs.2145
Subject(s) - chemistry , raman spectroscopy , intramolecular force , ring (chemistry) , molecule , molecular vibration , density functional theory , computational chemistry , steric effects , infrared , photochemistry , crystallography , stereochemistry , organic chemistry , physics , optics
Combretastatin‐A2 (CA2), a potential anticancer drug in advanced preclinical development, is extracted from the medicinal plant C ombretum caffrum. The NIR‐FT Raman and FT‐IR spectral studies of the molecule were carried out and a b initio calculations performed at the B3LYP/6‐31G(d) level to derive the equilibrium geometry as well as the vibrational wavenumbers and intensities of the spectral bands. The vibrational analysis showed that the molecule has a similar geometry as that of c is‐stilbene, and has undergone steric repulsion resulting in twisting of the phenyl ring with respect to the ethylenic plane. Vibrational analysis was used to investigate the lowering of the stretching modes, and enhancement of infrared band intensities of the C–H stretching modes of Me2 may be attributed to the electronic effects caused by back‐donation and induction from the oxygen atom. Analysis of phenyl ring modes shows that the CA2 stretching mode 8 and the aromatic C–H in‐plane bending mode are equally active as strong bands in both IR and Raman spectra, which can be interpreted as the evidence of intramolecular charge transfer (ICT) between the OH and OCH 3 groups via conjugated ring path and is responsible for bioactivity of the molecule. Copyright © 2008 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here