z-logo
Premium
Lithium solvation and diffusion in the 1‐butyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquid
Author(s) -
Duluard Sandrine,
Grondin Joseph,
Bruneel JeanLuc,
Pianet Isabelle,
Grélard Axelle,
Campet Guy,
Delville MarieHélène,
Lassègues JeanClaude
Publication year - 2008
Publication title -
journal of raman spectroscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.748
H-Index - 110
eISSN - 1097-4555
pISSN - 0377-0486
DOI - 10.1002/jrs.1896
Subject(s) - ionic liquid , imide , chemistry , solvation , lithium (medication) , ion , raman spectroscopy , sulfonyl , diffusion , ionic bonding , inorganic chemistry , organic chemistry , thermodynamics , medicine , physics , alkyl , optics , endocrinology , catalysis
The Raman spectra of (1 − x )(BMITFSI), x LiTFSI ionic liquids, where 1‐butyl‐3‐methylimidazolium cation (BMI + ) and bis(trifluoromethane‐sulfonyl)imide anion (TFSI − ) are analyzed for LiTFSI mole fractions x < 0.4. As expected from previous studies on similar TFSI‐based systems, most lithium ions are shown to be coordinated within [Li(TFSI) 2 ] − anionic clusters. The variation of the self‐diffusion coefficients of the 1 H, 19 F, and 7 Li nuclei, measured by pulsed‐gradient spin‐echo NMR (PGSE‐NMR) as a function of x , can be rationalized in terms of the weighted contribution of BMI + cations, TFSI − ‘free’ anions, and [Li(TFSI) 2 ] − anionic clusters. This implies a negative transference number for lithium. Copyright © 2008 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom