z-logo
Premium
Preservation potential for Late Quaternary river alluvium
Author(s) -
Lewin John,
Macklin Mark G.
Publication year - 2003
Publication title -
journal of quaternary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.142
H-Index - 94
eISSN - 1099-1417
pISSN - 0267-8179
DOI - 10.1002/jqs.738
Subject(s) - aggradation , alluvium , quaternary , geology , bedrock , quaternary science , pleistocene , holocene , channel (broadcasting) , paleontology , fluvial , structural basin , engineering , electrical engineering
Abstract Valley sequences of Late Quaternary alluvial units reflect alluvial preservation as well as alluvial production factors. Effects of lateral channel migration, incision, aggradation and channel stability on preservation potential are explored and then considered in the light of 14 available data sets: cartographically dated and model data based on lateral channel migration; well‐mapped and dated Late Quaternary valley unit surveys; and composite age–frequency plots for dated alluvial units and flood sediments. Despite much expectable variation between sites, and the complex effects of river‐activity combinations, a common characteristic of the data sets examined is the significance of preservation factors. Lateral migration tends to eliminate older units as it creates new alluvial deposits, whereas incision may lead to the preferential preservation of older units beyond the incision slot. Aggradational environments are likely to preserve more complete records, although simultaneous lateral migration may eliminate, possibly repeatedly, the upper parts of alluvial units. The common pattern of inset and incised streams within Pleistocene and early Holocene fills or bedrock gives finite extent to later units within narrowing valleys so that development of new valley‐floor units is necessarily at the expense of reprocessing earlier ones. Floods associated with both slack water deposits and berms are also responsible for the removal of accessible earlier materials, thus limiting the preserved record of earlier events. In light of these censoring effects of river activities, the sequence of preserved Late Quaternary units within UK sequences is reconsidered. It is concluded that preservation potential factors have led to spatial and temporal bias in the alluvial record, and that both here and elsewhere preservation potential needs to be considered systematically alongside variable sedimentation resulting from allogenic environmental factors when interpreting the alluvial archive. Copyright © 2003 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here