Premium
Palaeogeographical changes in response to glacial–interglacial cycles, as recorded in Middle and Late Pleistocene seismic stratigraphy, southern North Sea
Author(s) -
Eaton Stephen J.,
Hodgson David M.,
Barlow Natasha L. M.,
Mortimer Estelle E. J.,
Mellett Claire L.
Publication year - 2020
Publication title -
journal of quaternary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.142
H-Index - 94
eISSN - 1099-1417
pISSN - 0267-8179
DOI - 10.1002/jqs.3230
Subject(s) - geology , interglacial , glacial period , pleistocene , paleontology , marine isotope stage , sea level , sedimentary rock , early pleistocene , geomorphology , oceanography
Offshore stratigraphic records from the North Sea contain information to reconstruct palaeo‐ice‐sheet extent and understand sedimentary processes and landscape response to Pleistocene glacial–interglacial cycles. We document three major Middle to Late Pleistocene stratigraphic packages over a 401‐km 2 area (Norfolk Vanguard/Boreas Offshore Wind Farm), offshore East Anglia, UK, through the integration of 2D seismic, borehole and cone penetration test data. The lowermost unit is predominantly fluviatile [Yarmouth Roads Formation, Marine Isotope Stage (MIS) 19–13], including three northward‐draining valleys. The middle unit (Swarte Bank Formation) records the southernmost extent of tunnel valley‐fills in this area of the North Sea, providing evidence for subglacial conditions most likely during the Anglian stage (MIS 12) glaciation. The Yarmouth Roads and Swarte Bank deposits are truncated and overlain by low‐energy estuarine silts and clays (Brown Bank Formation; MIS 5d–4). Smaller scale features, including dune‐scale bedforms, and abrupt changes in cone penetration test parameters, provide evidence for episodic changes in relative sea level within MIS 5. The landscape evolution recorded in deposits of ~MIS 19–5 are strongly related to glacial–interglacial cycles, although a distinctive aspect of this low‐relief ice‐marginal setting are opposing sediment transport directions under contrasting sedimentary process regimes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom