z-logo
Premium
Origin and age of The Hillocks and implications for post‐glacial landscape development in the upper Lake Wakatipu catchment, New Zealand
Author(s) -
McColl Samuel T.,
Cook Simon J.,
Stahl Timothy,
Davies Timothy R. H.
Publication year - 2019
Publication title -
journal of quaternary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.142
H-Index - 94
eISSN - 1099-1417
pISSN - 0267-8179
DOI - 10.1002/jqs.3168
Subject(s) - geology , glacial period , shore , pleistocene , landform , physical geography , paleontology , river terraces , geomorphology , hillock , drainage basin , erosion , fluvial , archaeology , structural basin , oceanography , geography , cartography
Ambiguous landscape histories can arise from equivocal or incomplete geomorphological, sedimentological or geochronological evidence. In this study, we apply quantitative analyses to robustly assess the origin and age of a field of rounded mounds, known as ‘The Hillocks’. Using clast analysis, the sediment is shown to be consistent with a landslide origin but inconsistent with other glacial sediments in the region. Cosmogenic 10 Be exposure age dating suggests The Hillocks formed ~8 ka. Ground‐penetrating radar reveals that the deposit rests upon deltaic foreset beds; combined with topographical data, we calculate a deposit volume of ~15–27 M m 3 , consistent with the estimated volume of the proposed source area. Overall, our data support a rock avalanche origin, indicating that by 8 ka the valley was ice‐free at The Hillocks’ location, and the level of Lake Wakatipu was lower than 340 m asl by this time. The Dart River delta shoreline was situated somewhere between The Hillocks and the present day shoreline at that time, and has prograded at a maximum average rate of 1 m a −1 since ~8 ka. These findings are significant given the lack of landforms by which to constrain glacial or post‐glacial landscape histories in this region of New Zealand. Copyright © 2019 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom