z-logo
Premium
Can rapidly accumulating Holocene peat profiles provide sub‐decadal resolution proxy climate data?
Author(s) -
Amesbury Matthew J.,
Barber Keith E.,
Hughes Paul D. M.
Publication year - 2012
Publication title -
journal of quaternary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.142
H-Index - 94
eISSN - 1099-1417
pISSN - 0267-8179
DOI - 10.1002/jqs.2561
Subject(s) - peat , testate amoebae , radiocarbon dating , macrofossil , holocene , ombrotrophic , tephra , geology , coring , physical geography , proxy (statistics) , sphagnum , paleoclimatology , climate change , climatology , bog , environmental science , paleontology , oceanography , geography , archaeology , mechanical engineering , drilling , volcano , machine learning , computer science , engineering
To test the potential for developing sub‐decadal resolution records of ombrotrophic bog surface wetness (BSW), selected abrupt climate events were identified in cores from four sites in north‐west Europe and time‐slices over each event were investigated at 2–5‐mm resolution using peat humification, testate amoeba and plant macrofossil analyses. Age–depth models based on radiocarbon, spheroidal carbonaceous particle and tephra dates were applied and the error in these models was used to determine the effective temporal sampling resolution, which in most cases was sub‐decadal. Fine‐resolution results revealed some inconsistencies in the co‐variability of individual proxies and there was a lack of correspondence between some results from adjacent cores. However, we found evidence of abrupt shifts in BSW occurring over ca. 5–20 years, indicating a more rapid proxy response than identified in previous research. To maximize potential temporal resolution and produce reliable sub‐decadal BSW data in future research, we recommended that peat‐based studies should obtain the best possible chronological control, focus on sites with high species diversity and rapid accumulation rates and perform replicate coring, or use open peat sections where the stratigraphy can be clearly seen, to assess intra‐site differences in microtopography. Site‐specific factors should be a primary consideration in the selection of sites for future fine‐resolution research. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here